Moderated and Drifting Linear Dynamical Systems

نویسندگان

  • Jinyan Guan
  • Kyle Simek
  • Ernesto Brau
  • Clayton T. Morrison
  • Emily Butler
  • Kobus Barnard
چکیده

We consider linear dynamical systems, particularly coupled linear oscillators, where the parameters represent meaningful values in a domain theory, and thus learning what affects them contributes to explanation. Rather than allow perturbations of latent states, we assume that temporal variation beyond noise is explained by parameter drift, and variation across coupled systems is a function of moderating variables. This change in model structure reduces opportunities for efficient inference, and we propose sampling procedures to learn and fit the models. We test our approach on a real dataset of self-recalled emotional experience measurements of heterosexual couples engaged in a conversation about a potentially emotional topic, with body mass index (BMI) being considered as a moderator. We evaluate several models on their ability to predict future conversation dynamics (the last 20% of the data for each test couple), with shared parameters being learned using held out data. We validate the hypothesis that BMI affects the conversation dynamic in the experimentally chosen topic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical distance as a semi-metric on nuclear conguration space

In this paper, we introduce the concept of dynamical distance on a nuclear conguration space. We partition the nuclear conguration space into disjoint classes. This classification coincides with the classical partitioning of molecular systems via the concept of conjugacy of dynamical systems. It gives a quantitative criterion to distinguish dierent molecular structures.

متن کامل

Dynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review

The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...

متن کامل

تحلیل پایداری معادلات سنتیک نقطه‌ای نوترون با نه گروه فوتونوترون

Lyapunov exponent method is one of the best tools for investigating the range of stability and the transient behavior of the dynamical systems. In beryllium-moderated and heavy water-moderated reactors, photo-neutron plays an important role in dynamic behavior of the reactor. Therefore, stability analysis for changes in the control parameters of the reactor in order to guarantee safety and cont...

متن کامل

Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...

متن کامل

Eigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays

Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015